
Guaranteeing Mutual Exclusion in Transactional Systems
Chakshu Tandon, Shaleen Garg

Rutgers University

Abstract
Typical transactional systems may have hundreds or thou-
sands of transactions being executed at any point in time.
Many of these systems operate on shared objects.

The ACID properties of transactions may be violated by
errors that are semantic in nature, uncaught by the compiler.

In this paper, we design and implement a library which
provides fail-stop enforcement and easy debugging for main-
taining mutual exclusion in transactional systems. This guar-
antees that transactions maintain their ACID properties.

Our low overhead design and easy to merge library can be
quickly used by existing transactional systems.

1 Introduction
Transactions are a set of instructions with ACID properties.

ACID is an acronym for Atomicity, Consistency, Isolation,
and Durability.

Transactional systems are systems that run transactions.
The world of business is based on transaction of money and
services. Any error in these systems can lead to losses in
terms of money, data, or time.

Errors in any transactional system can be classified into
syntactic errors and semantic errors. A syntactic error arises
when the written program has invalid program syntax or sim-
ilar mechanical fault. Such an error is easy to detect using
existing compilers and thus usually easy to correct.

Semantic errors can occur in programs which are syntacti-
cally correct, however, do not produce the desired results and
may also leave the system in an unusable state. For instance,
consider this small transactional system with two concurrent
threads, editing a shared variable A.

1 vo id Thread1 (i n t A, sem_t mutex)
2 {
3 sem_wai t (&mutex) ;
4 A += 1 ;
5 sem_pos t (&mutex) ;
6 r e t u r n ;
7 }

1 i n t Thread2 (i n t A, sem_t mutex)
2 {
3 / / doesn ’ t w a i t f o r mutex l o c k
4 A ∗= 1 2 ;
5 i n t a = A ∗5 ;
6 r e t u r n a ;
7 }

Figure 1: Threads running concurrently can lead to unexpected
results

The program above is syntactically correct, but as one can
notice Thread2 does not write to the shared object A safely.
It does not use the appropriate locks which can leave the
system with values in the shared object to be either unexpected
or corrupt, which is not desirable. Here, the properties of
durability, consistency, and isolation are violated.

Even today, semantic bugs can sneak into production soft-
ware. This is largely due to lack of compiler support and ade-
quate testing suites for semantic bugs in transactional systems.

Moreover, semantic bugs such as violated mutual exclusion
are generally triggered due to race conditions. Making sure
all the race-conditions are checked requires brute-force tests
which are neither easy to implement nor technically sound
due to their inefficiency.

Semantic bugs that sneak into production software, at some
point, may lead to an inconsistent state. Even with all the
available system logs it is difficult to exactly point out the
error in the source code. While the logs may show which
entity wrote what data, it can not capture race conditions
since all the user threads are at the mercy of the operating
system’s thread scheduler. Such scheduling information is not
exposed to user threads. With larger transactional systems,
this problem only amplifies.

This paper provides a solution for fail-stop enforcement
and easy debugging for maintaining mutual exclusion in trans-
actional systems. While capturing the semantics of a large
transactional system is difficult, intuitively, we want to avoid
objects being in an inconsistent state. So, there is some light
if we can enforce the ACID properties while writing to shared
objects.

The first step in such an approach would be to know shared
objects in a given transactional system. Section 2 includes
why this is a difficult problem. Section 3 provides a work
around for this problem.

The second step is to enforce, at runtime, atomic writes to
those shared objects. Section 2 talks about the overheads asso-
ciated with enforcing atomic writes and our efficient solution
for it.

2 Background
As a method of solving different problems, we shall intro-

duce the various methodologies and technologies we used.

2.1 Detecting Shared Data Structure
Consider the program as listed in figure 2. A reasonable

presumption about the value x would be 11. However, function
f may change the value of x by casting away the constant. It
may also store the address of x in a global variable so that
function g can alter the value x. A compiler has to be very
careful when analysing pointers because they can change with
program inputs at runtime.

Based on indecisiveness of pointers, compilers cannot be
sure that a given object is shared. Therefore, we resort to help
from the programmer to identify shared objects in the given
program. With our adaptation of transactional mutual exclu-
sion, we eliminate this problem and identify shared objects at
runtime. Section 3 goes into further detail.

1 i n t ∗ addr_x ;
2

3 vo id f (i n t c o n s t &) ;
4 vo id g () {
5 ∗ addr_x = 2 ;
6 }
7 i n t main () {
8 i n t x = 1 0 ;
9 f (x) ;

10 x += 1 ;
11 g () ;
12 c o u t << x << " \ n " ;
13 }

Figure 2: Program showing the difficulty in using pointers for trac-
ing shared objects

2.2 Protecting Memory Objects
The Linux operating system has mechanisms to protect a

region of memory from stray reads and writes in the calling
process. The mprotect() system call applies protection to all
the pages in a given range by setting appropriate bits in the
page table entries corresponding to those memory pages. This
call is process-global in nature, i.e. any protection applied is
visible across all the processes.

The mprotect() system call is a powerful tool to control the
write permissions of memory objects at various points in the
program execution. But such power does not come without
heavy performance overheads. For a large contiguous region
of virtual memory an mprotect() call incurs the following
overheads:

1. A kernel trap.

2. Updates to hundreds or even thousands of page table
entries requiring expensive memory lookups.

3. Processor TLB cache invalidations.

A typical mprotect() call spanning roughly a 1000 pages
can incur a latency of approximately 25 µs. The cost of an
mprotect() call for non-contiguous memory regions can be
significantly higher. Such a cost can become a very large
bottleneck for high-frequency permission updates.

Intel-based CPUs have a new hardware page protection
mechanism called Memory Protection Keys (MPK). It is a
lightweight mechanism to handle per-thread memory permis-
sions. Each physical thread has a user-accessible, thread-local
PKRU (protection key rights for userspace) register which
can be changed by the individual thread without privileged
rights. A thread can therefore change the protections of mem-
ory pages in its address space very quickly. The Linux kernel
and glibc provide library support to handle protection keys
(pkeys) from user space. Updating memory protections does
not require a kernel trap, updates to the page tables, or TLB
shoot-downs. Permission changes take ~15 ns. In total, the

hardware allows for 16 pkeys 1. It can be noted, that a child
thread inherits all the pkeys from its parent.

Since, there is no need for privileged access to change
PKRU registers, and thus memory protection, this mecha-
nism is useful for keeping self-discipline rather than enforced-
discipline.
2.3 Source Code Compliance

Any solution has a set of assumptions and expectations
from its users. In order to make compliance easy and effective,
we used a well-known source analysis and compilation tool
called LLVM [1].

LLVM provides the ability to write front-end passes for
many source languages and target various instruction set ar-
chitectures (ISA). It also has powerful mechanisms to alter the
source code as well as make modifications to its architecture-
independent and language-independent intermediate represen-
tation (IR). Since transactional systems can be quite large, it is
reasonable to expect an automated tool to help in compliance.
Using LLVM, we have written compiler passes based on our
assumptions listed in section 3 to check source compliance
and modify programs accordingly.

3 Our Design and Implementation
The objective of our approach is to provide fail-stop en-

forcement of mutual exclusion and easy debugging in transac-
tional systems. To this end, we have implemented a support
library along with a compiler pass to meet that objective.

In this section, we shall look at the high-level architecture
and implementation details of our proposal.

1 vo id T y p i c a l C r i t i c a l S e c t i o n (sem_t mutex , . . .)
2 {
3 sem_wai t (&mutex) ;
4 / / C r i t i c a l s e c t i o n
5 sem_pos t (&mutex) ;
6 }

Figure 3: Lock: Typical Critical Section
1 vo id Lock&Perm (sem_t mutex , . . .)
2 {
3 sem_wai t (&mutex) ;
4 PKRU_WRITE_ENABLE
5 / / C r i t i c a l s e c t i o n
6 PKRU_WRITE_DISABLE
7 sem_pos t (&mutex) ;
8 }

Figure 4: Lock&Perm: New Lock Semantics

3.1 High-Level Architecture
The failure to maintain mutual exclusion occurs when some

thread does not properly honor the semantics of a critical
section, ie. they do not use locks before writing to shared
objects.

1There are only 15 protection domains available to user applications. Key
zero is used for the default protection domain.

2

In order to enforce mutual exclusion, for each shared object,
we associate a pkey used to provide access control to that
object. By default, we disable write-access to the pkey so that
no stray writes to the shared objects are possible.

Further, we require a new lock semantic for transactional
systems called Lock&Perm to enforce transactional security.

Figure 3 shows how mutual exclusion is typically ensured.
Here the issue arises form the fact that there is no memory
protection if an erroneous thread does not use semaphores
correctly.

Figure 4 shows the change in lock semantics in our ap-
proach. In addition to semaphores, we have included enabling
write permission on shared objects. The combination of the
two enforces mutual exclusion even on threads which have
semantic bugs in their source code. Even if a erroneous or
malicious thread tries to edit shared object without the ap-
propriate locking mechanism (Lock&Perm), it will incur a
segmentation fault since the memory is protected.

1 vo id LockOnly (sem_t mutex , . . .)
2 {
3 sem_wai t (&mutex) ;
4 / / C r i t i c a l s e c t i o n
5 sem_pos t (&mutex) ;
6 }

Figure 5: Correct semaphore usage but failure to enable write
protection

1 vo id PermOnly (sem_t mutex , . . .)
2 {
3

4 PKRU_WRITE_ENABLE
5 / / C r i t i c a l s e c t i o n
6 PKRU_WRITE_DISABLE
7 }

Figure 6: No semaphore usage with the PKRU updates
1 vo id NoLockNoPerm (. . .)
2 {
3 / / C r i t i c a l s e c t i o n
4 }

Figure 7: Using neither semaphore nor write protection

With the new lock semantics, there remain three types of
erroneous critical sections:

1. Figure 5 shows a scenario where some thread is only
using semaphores and no write permission. If, this thread
tries to write to a shared object, it will incur a segmenta-
tion fault since it does not have write permissions.

2. Figure 6 shows a scenario where a malicious thread is
trying to sneak some updates without first acquiring a
lock. The following subsection discusses how we mit-
igate these classes of errors using an LLVM compiler
pass.

3. Figure 7 shows a scenario where a malicious thread is
blatantly trying to update some shared object without

Algorithm 1 Define a Shared Object
1: mem = Allocate_Memory(size)
2: pkey = pkey_alloc(WRITE_DISABLE)
3: pkey_mprotect(mem, pkey)
4: return Mem

acquiring a lock or updating the pkeys. Again, this thread
will incur a segmentation fault since it does not have
write permissions.

Next we shall show, how the mitigation library is structured
and how different error scenarios are handled.
3.2 Implementation Details

Our library is a combination of functions and an LLVM
pass. For user ease, we provide two library calls to:

Define a shared object As shown in section 2 we can not
automatically detect shared objects in a program. Our library
provides a function to declare shared objects. Using this li-
brary function, the user specifies objects which are accessed
concurrently.

Algorithm 1 describes the library function which is used to
define a new shared object. In addition to allocating memory,
the function also allocates a new pkey for that object and
disables write access to this object.

Define a Critical Section To make it easy for the program-
mer to use the new lock semantics, we provide a library func-
tion which is a wrapper around a user-defined critical function.
As arguments, it requires the a reference to the shared object
as well as a pointer to a user-defined critical function.

Algorithm 2 illustrates the workings of the wrapper func-
tion. Here, after acquiring a lock, write access is enabled
through the PKRU register for the shared object and the criti-
cal function is called. Before returning, write access on the
protection key is disabled and the lock is released.

In addition to the two library calls as described above, we
use an LLVM front-end pass to check through the source
program. We assume that pkeys are not used for any other
purposes in the system. So, if there exist any usage of the
PKRU register, which are not from our library, then they must
be removed since they are considered to be erroneous.

The LLVM pass goes through all the functions, other than
those explicitly marked by our library, and warns the pro-
grammer of any stray PKRU updates. Stray PKRU writes
are ones that do not originate from the library functions. It
also edits the source to make the system compliant. If this
non-compliance was a part of human error, the programmer
will change the program and make it compliant providing
easy debugging; else, the software will incur a segmentation
fault when the shared object is changed without the required
permissions, providing fail-stop enforcement.

3

Figure 8: Design of our library for transactional systems. We ensure incorrect lock semantics result in a page fault at runtime.

Algorithm 2 Wrapper: Critical Section
1: Acquire_Lock
2: PKRU_WRITE_ENABLE
3: Call critical_function(...)
4: PKRU_WRITE_DISABLE
5: Release_Lock

4 Evaluation and Limitations
Any system that caters to transactions must maintain their

ACID properties. We demonstrate that we meet these require-
ments in our system.

Atomicity Consider two threads operating on two shared
objects simultaneously. It is possible that updates to one of
the shared objects is persisted but the transaction failed before
completion. Our library focuses on providing consistency and
isolation, hence relies on existing rollback mechanisms to
maintain atomicity. Using our library does not hurt atomicity
as the library guarantees that no transaction following all the
critical section rules will fail due to the changes made by the
library’s compiler pass.

Consistency Our library ensures that no malicious or erro-
neous thread is able to mutate shared objects. This is ensured
by using additional write protections around shared objects
in addition to semaphores and mutexes. Any thread poised to
make a shared object inconsistent, receives a segmentation
fault, maintaining the objects consistent state.

Isolation The library ensures that at no point are two threads
able to write to the same shared object simultaneously. This
is done by the memory protection checks in LLVM pass. The
pass will remove any instance of pkey protection updates

which are not preceded with a lock. Hence, at runtime, such a
thread will receive a segmentation fault. Therefore, isolation
across different concurrent threads is maintained.

Durability This library relies on underlying hardware and
software features like journaling to provide durability. While,
the library does not add any durability guarantees to the trans-
actional system, it does not harm existing durability guaran-
tees.

Given the programmer correctly defines all shared objects,
the given approach will prevent bugs in attaining proper mu-
tual exclusion and simplify the endeavor of debugging the
program if such semantic errors remain.

Our evaluation is based on the number of source lines to
be changed by the programmer and the overheads incurred
while executing the program.

1 i n t V a n i l l a C o d e ()
2 {
3 / / P r e T e x t
4 i n t ∗A = m al lo c (s i z e) ;
5 sem_wai t (&mutex) ;
6 C r i t i c a l F u n c (A) ;
7 sem_pos t (&mutex) ;
8 / / P o s t T e x t
9 }

1 i n t Modif iedCode ()
2 {
3
4 / / P r e T e x t
5 A ∗= L i b A l l o c (s i z e) ;
6 L i b C r i t i c a l (∗ C r i t i c a l F u n c , A) ;
7 / / P o s t T e x t
8
9 }

Figure 9: Change in source code needed by the programmer

Figure 9 shows the change in the source code. For small
programs it should not be difficult to migrate to our architec-
ture. For large programs, however, the changes may be more
significant.
4.1 Limitations

There are a few limitations to our approach which arise
from hardware and software constraints listed below.

1. Since, we tag and protect each shared object using pkeys,
we are limited in the number of shared objects to the
number of available hardware pkeys. Most hardware

4

that supports pkeys, only supports a total of four bits for
referencing, i.e. a total of 16 pkeys. We can remove this
assumption by using software pkeys such as the ones
described in [2].

2. The crux of restricting any illegal write operations to
shared objects is based on the removal of pkey operations
by the user program. Therefore, our approach does not
allow any other usage of pkeys by the user program.

3. Software most often use different shared libraries to of-
fload functionalities in their core logic. Our approach
requires all the shared libraries to be compliant by chang-
ing source code and recompiling using our LLVM pass.

5 Conclusion
We have shown a first order solution which mitigates unex-

pected behavior due to the absence of correct mutual exclusion
guarantees in transactional systems. To this end, our solution
provides fail-stop enforcement and easy debugging for such
unexpected behavior. Ultimately, we hope this system will

be used to protect large-scale transactional systems and en-
able developers to automatically locate semantic bugs in their
programs.

We would like to thank Santosh Nagarakatte and Sudarsun
Kannan for their inputs without which this work would not
have be possible.

References
[1] Chris Lattner and Vikram Adve. Llvm: A compilation

framework for lifelong program analysis transformation.
In Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and
Runtime Optimization, CGO ’04, page 75, USA, 2004.
IEEE Computer Society.

[2] Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon,
and Taesoo Kim. libmpk: Software abstraction for intel
memory protection keys (intel MPK). In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages
241–254, Renton, WA, July 2019. USENIX Association.

5

