libppkey: In-Process Memory Isolation for Modern
Linux Systems

Chakshu Tandon
Computer Science Department
Rutgers University

Abstract—Modern Linux systems extend the inter-process
memory isolation guarantees of past systems with active mit-
igation techniques like Data Execution Protection (DEP) and
Address Space Layout Randomization (ASLR). We show these
mitigations are not enough to protect applications from all
kinds of memory vulnerabilities. Explicitly, a Format String
Vulnerability is exploited to leak stack and heap addresses with
ASLR enabled. Future hardware support for memory protection
such as Intel Memory Protection Keys (MPK) show a lot of
promise for in-process memory isolation, however, their benefit
for multi-threaded applications is minimal. We present a user-
facing library, libppkeys, along with modifications to a recent
version of the Linux operating system to better support protection
across multi-threaded applications. We are able to show that
it is possible to keep the performance benefits of Intel MPK
while offering per-process protection domains satisfying the
guarantees provided by mprotect(). We observe a ~ 2x latency
decrease in inter-thread permission synchronization as compared
to mpk_mprotect() and do_pkey_sync() from the libmpk library.

Index Terms—Linux virtual memory, memory isolation, Intel
MPK

I. INTRODUCTION

Our lives are becoming increasingly digital, necessitating
computer security be addressed more than ever. Modern op-
erating systems have come a long way in terms of security.
One of the central abstractions in many commodity operat-
ing systems is the isolation between different processes and
their memory. One process cannot access the memory of
another except in specific cases. This is known to increase
the security and dependability of applications. Isolation also
gives application developers the freedom to concern them-
selves about application details rather than interactions with
other applications running on the system. These interactions
include other processes that run on the same shared hardware
contending for machine resources. To access shared hardware
resources, the OS exposes a set of ABI to ensure safe and
efficient resource multiplexing. In addition to process memory
isolation, implementations of Linux Security Modules (LSM)
including SELinux [1] and AppArmor further restrict the
impact of one application towards another by predefining
application policy.

With the various guarantees provided by the operating sys-
tem for memory isolation between processes, a sort of natural
question arises: what set of isolation exists within a processes’
address space? This study aims to answer this question by
looking at existing techniques and proposes a new solution to

increase in-process memory isolation for Linux applications.
The result of which is to create memory protection domains
which reduce application attack surface and limit the ability
for malicious actors and faulty multi-threaded code to go
unnoticed.

Traditionally, intra-process memory protection has been pro-
vided through techniques such as Data Execution Protection
(DEP) which prevents areas of memory from being exe-
cuted by the processor, Address Space Layout Randomization
(ASLR) which randomizes the locations of important user and
kernel data structures to prevent many forms of attacks, and
base-bounds checking in Intel MPX. The mprotect() system
call allows modification of the protection bits in the process
page table. More recently, a key-based permission control
model named Intel Memory Protection Keys (MPK) has been
ported to the x86_64 architecture.

In the next section, we survey the virtual memory subsystem
in the Linux kernel (§2). Section 3 discusses recent attacks and
other possible memory vulnerabilities (§3). We discuss current
memory protection techniques and attack mitigations (§4). The
challenges of these existing protections are also evaluated. We
dedicate a section to Memory Protection Keys to understand
the goals of Intel MPK and the hardware and kernel support
that is required (§5). Next, we introduce an abstraction over
Intel MPK called libppkeys which addresses a specific issue
in the MPK design(§6). A brief evaluation of this system as
compared to existing protection techniques is then presented

$7.
II. BACKGROUND

Like any hardware resource, memory is a scarce and
contended resource. Most operating systems provide virtual
memory as a subsystem which is responsible for providing an
isolated view of physical memory. The central data structure
in Linux behind the virtual memory support is called the page
table. The page table provides translations between physical
system memory and virtual application address space. The
smallest unit of memory recognized by the operating system
is called a page. The role of the page table is then to provide
a map between physical pages and virtual application pages.
It ensures that two processes that do not share memory
are allocated a disjoint set of physical pages. Importantly,
virtual memory must be contiguous to transparently enable
the application’s illusion of having the entire system memory
to itself. This section will discuss the design of the page table,

how it supports the role of virtual memory, and the memory
protections it offers in relation to the hardware memory
management unit (MMU).

In a 32-bit system, there exist up to addresses or roughly
4 GB of memory. A page varies from system to system but is
generally 4096 bytes. Since the page table requires a page table
entry (PTE) per page in the virtual address space, nearly one
million entries per process would be needed in a “flat” page
table design. A 64-bit system allows 264 system addresses
meaning 2°? PTEs are required per process. A flat page table
structure simply has too many entries and does not work for
modern systems. Fortunately, it is noted that most applications
maintain sparse address spaces and thus a hierarchal page
table design is appropriate. Ahn et al. discuss a case in which
hypervisors are better suited using flat nested page tables to
reduce unnecessary memory references for nested walks [2]. In
most cases, using a multi-level hierarchal page table generally
saves memory at the expense of multiple memory lookups.

In Linux, four levels of hierarchy are used which are
independent of the hardware page-walk. The highest level
PML4 points to various page directories (PGD) which in
turn point to multiple middle directories (PMD) which finally
point to page table entries (PTE) containing the virtual-to-
physical mapping. For our purposes, we are only interested
in the PTE as they contain the mapping and protection bits.
Figure 1 shows the layout of the PTE and the various bits
contained within. Bit 1 contains the first protection offered by
the hardware. If the entry contains a zero, writes to the page
are disabled. Bit 2 indicates if a page belongs to a user or the
operating system. A user attempting to access a supervisory
page will fault to the operating system. Bits 12 to M-1 contain
the physical page frame number (PFN). Bits 59 to 62 contain
the protection key used in Intel MPK. Finally, the XD/NX
bit (63) indicates that the page supports execution. Later, we
will discuss the memory protection features the page table
structure provides in conjunction with hardware and operating
system support (§4). The x86 specifications provide further
detail about each of the bits contained in the page table entries
[3].

There are several assumptions made by Linux regard-
ing virtual memory. First, each process is represented by a
task_struct, which contains reference to the address space in
an mm_struct. By virtue, this address space exists globally to
the process to which it belongs. Therefore, all processors see
the same page entries regardless of execution context. This
assumption is deeply rooted within the kernel and severely
restricts the ability to keep a logical page table per protection
domain. This would allow different threads to specify which
memory is shared for performance and simplicity and page
which are exclusive for security and fault-containment. In
general, the assumption of a single address space per process
leads to the conclusion that it is the role of the operating sys-
tem to mostly isolate memory between applications. Evident
by the countless application vulnerabilities discovered daily,
an expectation of secure-by-default and in-process memory
protection requires further support from both the operating

232

system and the hardware.

IIT. MOTIVATIONS

Applications built today have the expectation to scale far
beyond previous levels. Developers have largely adopted dis-
tributed “microservice” architectures. As a result, the com-
plexity of applications has skyrocketed. Security, however, has
not kept up with the growth in demand and many serious
vulnerabilities are being discovered as a result. Furthermore,
virtual machines and containerization have largely enforced
the concept of a single-purpose execution environment. Inter-
process memory safety at higher tiers of the application
stack are less important than in-process memory isolation.
Here, we discuss recent attacks and other possible memory
vulnerabilities. The following section will demonstrate that
current mitigation techniques are insufficient to handle such
vulnerabilities.

A. OpenSSL Heartbleed

Many in the industry will be able to recall CVE-2014-0160,
known commonly as Heartbleed. This bug was a serious vul-
nerability in the popular OpenSSL cryptographic library which
leaked protected SSL/TLS encryption secrets due to missing
bounds checking in user-provided input. Attackers were able to
read up to 64 KB of surrounding memory by passing a buffer
that had a smaller length than indicated. OpenSSL would copy
memory into the buffer past the actual data to return to the
user completing the attack. The significance of this attack is
that it relied on primitive techniques and affected code that had
been reviewed by the open-source community countless times.
With a secure-by-default design implemented in the operating
system, many such attacks can be avoided. A similar type of
exploit known as a format string vulnerability is explained
below.

B. Format String Vulnerability (FSV)

A format string vulnerability (FSV) occurs in programs that
pass unvalidated user-input or other malformed format strings
into calls such as printf(), scanf(), and fprintf(). To under-
stand the attack, a simple example is taken. The following,
printf(”%d\n”, foo), places the string “%d\n” and the variable
”foo” on the user stack before proceeding with the function
call. Printf will parse the format string and start reading
variables off the application stack. Since the first agument
is provided as a string, it is difficult to statically check if
the number of arguments does in fact match with the format
specifier provided. For example,

printf("%x %d %p %s”);

reads several parameters from the stack when none were
provided. Specifically, it will read an unsigned hex integer, an
integer, a pointer, and a null-terminated character string possi-
bly running into the function context of a previously called
function. If the first argument is provided by an untrusted
user, this has the potential of leaking sensitive stack data
such as return pointers, application secrets, and user data from

6[6[6[6[5[5]5[5[5[5]5]5]5 M [M-1 EIEIEIHHEEE EEEEEUUUUUUUUUL

3|2(1|0|9(8|7(6(5/4[3(2]|1 2(1|0|9|8|7(6|5|4|3|2(1]|0(9|8|7|6|5|4|3|2|1|0|9|8|7 |6|5]|4|3|2|1|0
x| Prot P PIPI (R PTE:
4 lgnored Rsvd. Address of 4KB page frame lgn. GADAwasil 4KB
D| Key T| | [D|T["W page
PTE:
lgnored 0 not
present

Fig. 1. Format of a IA-32 Page Table Entry mapping to a 4-KByte page. Bits 12 to M-1 contain the virtual-to-physical page translation. Several bits are used
to store additional details about the page including access bits, memory protection key (prot. key), and data execution prevention bit (XD/NX).

previous stack frames. Newsham shows how this attack can
even be used to overwrite stack data leading to code execution
and application corruption [4]. Current versions of gcc will
give a compile-time warning, however, it is not known if all
compilers support this feature. Later, we show that a modern
Linux system with ASLR enabled exhibits this vulnerability
and application secrets are leaked at runtime (§4).

IV. CURRENT TECHNIQUES
A. Data Execution Protection (DEP)

Data Execution Protection labels different virtual area map-
pings (e.g. code, heap, stack, dynamic libraries) with various
protection bits contained in the page table (§2). The XD/NX
bit is common among modern processors and enables or
disables code execution for pages outside code regions. If the
NX bit is set to 1 for a particular memory page referenced
by the instruction pointer, a processor will call the registered
operating system handler which terminates the offending pro-
cess. Since code regions are set to read-only by default, this
has the effect of mitigating many types of attacks involving
buffer overflows and stack corruptions. DEP, however, does
not provide memory isolation and cannot protect against a
common vector of attack called return-oriented programming
[5] which uses existing segments in program and/or library
code known as gadgets to modify control flow.

B. Address Space Layout Randomization (ASLR)

Traditionally, attacks involving buffer overflows and other
memory vulnerabilities result from a known memory layout.
Address Space Layout Randomization is a technique employed
by modern operating systems to randomize the start location
of several important data structures in memory to render
such attacks useless. To avoid leaking potentially sensitive
information, the stack and heap segments are placed at random
locations in a process address space. While a thoughtful
measure, security through obscurity is a flawed philosophy.
In addition to limited entropy bits (Figure 2), a single leak
of information is enough to circumvent the mitigation. Table
1 shows the number of unique addresses witnessed during
500,000 invocations of the benchmark. A dedicated adversary
may be able to perform a brute force attack bypassing such
mitigation. ASLR is controlled using:

/proc/sys/kernel/randomize_va_space

TABLE I
ASLR: DISTINCT ADDRESSES IN 500,000 INVOCATIONS
code | data | heap mmap stack
x86_32 1 1 8192 256 347319
x86_64 1 1 8192 | 418298 | 418522

0: No randomization

1: Conservative randomization. Shared libraries, stack,
mmap(), VDSO and heap are randomized

2: Full randomization. In addition to elements listed in the
previous point, memory managed through brk() is also
randomized.

Several challenges exist when using ASLR as a memory
protection technique. In the implementation of ASLR in Linux
3.7, a weak get_random_int_hash() is used which relies on
the MDS5 PRNG cipher. Yoo et al. demonstrate the cipher is
known to be vulnerable to a generic entropy-search attack
[6]. Secondly, we show that an FSV bypasses the ASLR
protections. The attack is possible since it does not require
knowledge of the exact location of the stack frames of victim
functions. In memory, the stack is a contiguous structure with
a known format. The FSV exploits locality of adjacent stack
frames. The following code provides some insight.

void createSecret(char =secret) {
sprintf (secret, ”s3cr3t_key”);

void vuln(char =input) {
printf (input);
I

int main() {
char input[50];
char xsecret malloc (25);
createSecret(secret);
fgets (input, 50, stdin);
vuln (input);

}

Here the vulnerability lies in the naked printf() call. The func-
tion takes user input from fgets() directly without sanitization.
The following FSV exploit results in a stack leak of the char
*secret heap address which is used to print the value.

> echo $(python -c
"print " %p" x 12 + "||
y | ./fmt_str_vuln

%s ‘llll

[Y] (]
= g =1 o

log2(ASLR address range) x86 32

w

0 0

data

stack

code heap mmap

.
ol

5 h B W 8 B &
3

log2{ASLR address range) x86 64

%o}

0 0
code data

heap mmap stack

Fig. 2. Bits of ASLR entropy across different virtual area mappings. A log transform is taken on the observed addresses to get bits of randomness. A total
of 500,000 invocations are captured. (Left) x86_32 machine with only 20 bits of entropy in mmap region corresponding to approximately 1 million address
range. (Right) x86_64 machine with significantly higher entropy in stack and mmap region with low entropy in heap region.

The printf() stack frame expects there to be twelve pointers
followed by null-terminated string. Since no arguments are
provided, it starts reading variables from vuln()’s stack frame
followed by main() which contains the address *secret. The
”%s” follows the pointer and displays the value ”s3cr3t_key.”
The following sections demonstrate mitigations to an attack
such as FSV using memory protection domains.

C. mprotect() System Call

The mprotect() system call sets protection on a region of
memory. It takes an address and length along with a com-
bination of protection flags (PROT_NONE, PROT_READ,
PROT_WRITE). It applies the protection to all pages in the
range by setting the appropriate bits in the page table entries
corresponding to the pages. Further, the mprotect() call is syn-
chronous causing the process to trap and produce faults for any
accesses after the call returns. It is this behavior that allows the
protection to be applied across different execution contexts in
multi-processor environments. Unlike Intel Memory Protection
Keys (MPK), the mprotect() call is process-global.

One of the biggest shortcomings of mprotect() is that it
lacks the performance characteristics to be used in high-
frequency updates to region of memory. As Corbet states,
this is beneficial for “handling of sensitive cryptographic data.
A network-facing daemon could use a cryptographic key to
encrypt data to be sent over the wire, then disable access
to the memory holding the key (and the plain-text data)
before writing the data out. At that point, there is no way
that the daemon can leak the key or the plain text over
the wire; protecting sensitive data in this way might also
make applications a bit more resistant to attack. [7]” Further,
multi-threaded applications can use fast updates to memory
regions to prevent and detect “stray” write operations that are
difficult to debug. Park et al. show applications for securing
management of OpenSSL TLS key material, the code cache
of JIT compilers, and performance sensitive key-value stores
such as Memcached [8].

Unfortunately, updates to page-table bits are very expensive.
They require a trap into the kernel (100-500 cycles), updates
to hundreds or thousands of page table entries in memory,
and equally many Translation-Lookaside Buffer (TLB) cache
invalidations across multiple processors. Figure 3 shows the
cost of an mprotect() on 1000 pages compared to other meth-
ods explained below. We can see mprotect() is several times
as expensive as other techniques. In the following section, we
will discuss Intel MPK and the performance benefits it has
over the traditional mprotect() system call.

V. INTEL MEMORY PROTECTION KEYS (MPK)

Compared to software, hardware changes far less frequently
and at greater organizational cost. New features generally
get added to software before they are implemented more
efficiently in hardware. This is the case with Intel Memory
Protection Keys (MPK). It builds upon features existing in
modern operating systems to increase the performance and
flexibility of memory protection.

A. Mechanism

Instead of updating the page protections directly in the page
tables which cause all of the problems explained previously
in the mprotect() section (kernel trap, TLB invalidations, etc.),
it assigns each page one of 16 keys!' per process using four
previously reserved bits in the PTE. A new register, accessible
from userspace, protection key rights for userspace (PKRU),
maintains two permission bits per key. At runtime, the hard-
ware checks each access against the intersection of the per-
thread (hardware hyperthread) PKRU register and traditional
page table protection bits. Updates to an entire group of pages,
which may or may not be virtually contiguous, need not
go through the kernel (e.g. page table updates), and do not
update page table entries causing expensive TLB shootdowns.
Two new un-privileged hardware instructions, RDPKRU and
WRPKRU, allow reading and writing to the PKRU register

IThere are only 15 protection domains available to user applications. Key
zero is used for the default protection domain.

Latencies of memory protection capabilities

50000

45000

40000

35000

w
=}
S
=]
=}

25000

Latency (ns)

20000
15000

10000

5000 /

0

0 20 40 60 80 100
Number of threads

® ppkey_user_mutex

® ppkey_user_mutex_tlb @® mpk_mprotect™

mprotect* (1000 pages)

Process Creation Latency [Imbench]
30000

25000

20000

15000

Latency (ns)

10000

5000

120 140
0 J— — —

fork+execve fork+exit fork+/bin/sh

M aws c5.xlarge gemu, unmodified qemu, modified

Fig. 3. (Left) Latencies of various memory protection capabilities compared to number of application threads. ppkey_user_mutex and ppkey_user_mutex_tlb
correspond to the latency of acquiring a mutex, updating the protection bits, and releasing the lock. The gray line represents a mprotect() of a region consisting
of 1000 pages. The green line are results gathered by syncing PKRU values in the libmpk paper. (Right) Results of the Imbench lat_proc tool to benchmark
process creation latency between our modified and unmodified kernel. Process creation overhead increases by less than 2%.

TABLE II
LATENCY OF INTEL MPK
Register General (ns) PKRU (ns) A (%)
Read 1.64 3.95 141
Write 2.22 14.28 543
PTE Update | mprotect (ns) | pkey_mprotect (ns) | A (%)
399.65 399.07 -0.15

with a latency between ~ 5 and 15 ns (Table 2). The apparent
overhead incurred by RDPKRU and WRPKRU as compared
to general-purpose registers can most likely be attributed to
flushes to the processor pipeline. This is required in order to
maintain correctness during branch-prediction and speculative
execution. Previously, quite difficult, this mechanism allows
two threads that share the same address space to have different
access rights to the same page. This can be useful for example
if two user requests are handled in separate threads. Each
request can be protected with the same key yet have different
access rights.

B. Linux Integration

In addition to the reading and writing to the PKRU register,
Linux has added support for three additional system calls since
v4.9. Glibc has further added library support since v.2.27.
pkey_alloc() and pkey_free() allocate and de-allocate keys
respectively. Internally, a bitmap is used by the kernel to iden-
tify keys which have been given to the process. pkey_free()
releases the key from the bitmap, however, does not change or
invalidate the protection key bits in the page table leading to a
protection-key-use-after-free vulnerability [8]. If the freed key
is reassigned, then as a side-effect, the old protection group
also gets included into the new group. Changing the page

table entries is prohibitively expensive, however, is needed to
resolve this issue.

The pkey_mprotect() system call is introduced to maintain
a backwards-compatible ABI with the mprotect() call. It is
functionally quite similar and is used to update the key of a
set of contiguous pages within the page table. Note this call
suffers from the same performance bottlenecks as mprotect().
Applications should avoid changing the key of a page through
pkey_mprotect() and rather group similar pages which are
updatable through the PKRU register.

Effort was taken to understand the relationship between
protection domains using Intel MPK and existing memory
mapping policy in the Linux kernel. Linux uses Virtual Mem-
ory Areas (VMA) to represent distinct areas within an address
space (e.g. code, heap, stack). The VMA is a contiguous
area of virtual memory which holds information about the
set of pages that it encompasses including the protection and
replacement policies. In a traditional mprotect() call, VMAs
may be split to encompass the change in permission. Two
VMAs may be merged if they are contiguous and have the
same permissions. The behavior of the pkey_mprotect() call
in regard to this matter does not seem to be written down but
has a predictable pattern. The same rules apply in terms of
mprotect(), except that two VMAs with different pkeys will
not be merged and/or split accordingly. This rule does not take
into account the value of the pkeys, rather the key itself which
significantly reduces the cost of VMA creation and deletion
in high-frequency protection updates.

C. PKRU Inter-Thread Sync

Here are the biggest issues with the implementation of Intel
MPK. The protection for a given domain is maintained in
the thread-local un-protected user-accessible PKRU register.
This causes two main issues: (i) Updates to a given thread’s

PKRU are not made coherent with other threads, (ii) A thread
can maliciously update its own PKRU to gain access to any
page belonging to the process. To emulate the per-process
protection guarantees provided by the mprotect() system call,
it is important that two threads are able to consistently see
the protection of a given page. This goes against the design
of MPK. In the next section, we show that it is possible
to emulate this behavior on existing machines with nearly
the same performance characteristics. Secondly, updates to
the thread’s PKRU are unprotected and unsupervised. To
increase performance, designers opted for user-level updates
to the PKRU register instead of an expensive system call for
protected read/write instructions. While our design does not
explicitly consider this case, updates are still made to user-
accessible memory locations, an adapted design which con-
siders a higher-protection trusted thread to handle protection
updates could be used.

In order to address the first issue, Park et al. introduce
do_pkey_sync() to sync the PKRU register across threads.
They do this in a lazy manner using Linux kernel hooks which
get called just before a thread is about to be rescheduled
[8]. In that case, the kernel will check if any updates have
been made in any of the other processors before returning
to user-mode. While the latency of kernel hooks is greatly
less than the latency of an mprotect() call (Figure 10 in [8]),
the alternative design we present has a significantly reduced
overhead. We will see the cost of a TLB shootdown of a single
ppkey page is less than the invocation of kernel hooks across
many application threads.

VI. OUR DESIGN

Our solution to this problem follows from the observation
that updates to the numerous PTEs are expensive. They
require kernel invocation, numerous memory accesses, and
TLB shootdowns in multi-processor configurations. Instead,
a group-wise protection policy which can be modified without
a kernel crossing enables applications to make frequent protec-
tion updates. To satisfy the per-process protection requirement
missing from the Intel MPK implementation, we consider
a hypothetical processor containing a PPKRU register. This
register references a ppkey structure in memory which has
the same semantics as the PKRU register in Intel MPK. All
threads belonging to a process reference the same address
in a protected PPKRU register. At runtime, the hardware
checks the intersection of three protection signifiers; (i) The
PTE protection bits, (ii)) The PKRU register, and (iii) The
ppkeys structure located at memory referenced by PPKRU.
In effect, this allows both a per-process and thread-local view
of memory that satisfies the performance benefits provided
by Intel MPK and the coherence guarantees provided by the
mprotect() system call. We utilize Intel MPK to simulate the
behavior of such a system and the results are analyzed. Figure
4 shows the system as described above.

PKRU PPKRU PKRU PPKRU
o010 [Ox2a 11100 [Ox2a
CPUO CpPU1
]
o
3
CPU2 CPU4
o101 J{ Ox2a 11111 J{ Ox2a
PKRU PPKRU PKRU PPKRU

Fig. 4. libppkey overview. Here four processors are shown each containing
a PKRU and PPKRU register. The red bits in the PKRU registers show the
thread-local updates as compared to CPUO. The PPKRU register on all four
CPUs points to memory location 0x2a which additionally contains a set of
ppkeys checked by the hardware during runtime satisfying the per-process
memory protection requirement.

A. Kernel Modifications

To enable support for ppkeys, some modifications were
made to a recent Linux kernel (v.5.4-rc2). We have decided to
allocate the ppkey region inside the kernel to increase portabil-
ity and adoption with various system run-times. Like the vDSO
region, the ppkey is installed as a special read/write mapping
into every process address space during process creation. This
occurs during load_elf_binary() in fs/binfmt_elf.c. First, the
kernel finds a free memory page and registers it as a special
mapping. A signal handler is also specified to handle page
faults. Since the mapping is needed immediately, a virtual
zeroed memory page is allocated and installed into the page
table at the address of the special mapping. Then just before
returning to user-mode it must set the PPKRU register. In
our implementation, since no such physical hardware register
exists, we confound it with the R15 general purpose register.
While the initial intention was to confound with one of
the SIMD registers, the former turned out to be easier to
implement.

B. libppkey User Library

The libppkey user library is responsible for maintaining the
protection bits stored at the ppkey region mapped into the
process address space by the kernel. Observing the /proc/-
self/maps file should reveal an entry labeled ppkey containing
a single page mapped with read/write permissions. The address
of the beginning of this page is stored in the R15 general
purpose register which is read by libppkey to make updates
to the ppkey area. To do so, it exposes two function calls int
ppkey_read(int key) and int ppkey_write(int key, unsigned int
prot).

Of the two, ppkey_write() is slightly more interesting. It
reads the location of the ppkey region using ppkey_get().
Next a ppkey is generated using bit operations on the key
and prot values that were passed as arguments. Currently,
the hardware does not support applying protections based on
the value of the ppkey vector, therefore, writing the ppkey

to memory is not sufficient. Instead, we utilize the existing
PKRU register to write the ppkey protections across all threads
via a signal handler. Actually, we store the intersection of
PKRU and ppkeys to simulate hardware support for ppkeys.
In hindsight, this was a poor decision and updating the PKRU
should have been done in the kernel. When a signal is
created using pthread_sigqueue, threads that registered with
the signal handler are suspended and a new thread is created
for the signal handler. Updates to the PKRU from the signal
handler are not carried to the register file of the child thread.
A siginfo_t structure is passed to the signal handler which
contains the context of the previously scheduled thread. In
theory, this should contain the PKRU state needed to context
switch back to the previous thread. We could update this state
on the user stack, however this structure seems to be missing
the PKRU register in current versions of libc. In the kernel, a
watchdog thread could listen for changes to the ppkeys vector
and apply updates to each of the PKRU registers. Briefly
attempting the above, the CPU running the watchdog would
softlock and waste CPU resources. More work is needed to
implement a working proof-of-concept utilizing the PKRU
register. In theory, it should be entirely possible to emulate
per-process ppkey behavior with Intel MPK.

VII. ANALYSIS
A. Hardware

Analysis was conducted on a custom 2nd generation Intel
Xeon Scalable Processor (Cascade Lake) with a sustained
all core Turbo frequency of 3.6GHz and single core turbo
frequency of up to 3.9GHz. On Amazon Web Services (AWS),
this corresponds to the c5.large instance type with 2vCPU
and 4 GB memory. A machine nearly identical in specs on
the Google Cloud Platform (GCP) did not have the necessary
support for Intel MPK. It is possible there are kernel or
hardware modifications made by the cloud providers which
enable or disable support for the feature. More exploration is
needed to identify the root cause of this behavior.

B. ASLR and FSV

Figure 2 shows the number of bits of entropy in 32-bit and
64-bit ASLR machines. With just over one million possible
address locations, a brute force attack is certainly feasible.
In many cases, even this is not required. Exploits such as
the Format String Vulnerability (FSV) attack (§4) abuse the
contiguity of the stack data structure to leak heap addresses
with sufficient accuracy. Many times, Data Execution Protec-
tion (DEP) can be bypassed maliciously by using existing
code within the application or linked libraries. A strange
observation is made on 64-bit machines. While the mmap
and stack produce 35 to 40 bits of entropy, the heap is again
limited to 25 bits of entropy. Further work may investigate
this phenomenon.

C. mprotect()

In Figure 3, we see the latency of a well-known system
call mprotect() on a region of memory 4 MB in size (1000

pages). For our application, this is quite a conservative region.
We may be further interested in regions several GB in size.
In any case, there is a clear upward relationship between the
number of threads and the latency of mprotect(). This is due
to the number of TLB shootdowns that must occur for each
execution unit. We also note that the latency is significantly
higher than any of the other capabilities presented in this paper.

D. Intel MPK and mprotect()

Intel Memory Protection Keys (MPK) reduce the overhead
of the mprotect() call significantly by writing changes to page
protection in a user accessible register PKRU. Table 2 shows
the cost of reading and writing to general-purpose registers and
the PKRU register. Compared to thousands of cycles required
by mprotect(), reading and writing to the PKRU register takes
less than 15 ns. The latency is much higher than reading or
writing to a general purpose register for the reason mentioned
above. Instead of incurring TLB shootdowns, all processor
pipelines must be flushed in order to observe consistent and
secure memory accesses. We further see that updating the
keys in the page table is as expensive as changing the PTE
protection bits. There is less than a 0.15% difference which
is expected as they both rely on the same do_mprotect_pkey()
in the kernel.

E. Intel MPK and libmpk

Again in Figure 3, we see the synchronization of the
PKRU register as enabled in the libmpk library. It uses a
lazy approach using a Linux feature called kernel hooks.
It is noted that the latency of synchronizing the PKRU of
32 threads is significantly lower than an mprotect() on the
same region. We further note that for a single thread, the
latency of mpk_mprotect() with do_mprotect_pkey() is much
higher than values found in Table 2. This may speak to the
overhead caused by such synchronization. Secondly, at 32
threads, the latency is nearly 10,000 ns which is much higher
than expected. We show using libppkeys, that we can reduce
the overhead due to synchronization to provide per-process
memory protection.

FE. libppkey

In (§6), we present our approach to in-process memory
protection building on the ideas of Intel MPK. We utilize a
per-process memory region ppkeys referenced by a hypothet-
ical hardware register PPKRU. We simulate the behavior of
PPKRU by setting the values of the PKRU thread by thread.
Figure 3 shows that even with the required locking and TLB
invalidation of the ppkey page, performance of ppkeys grows
linearly to the number of application threads. At 32 threads,
the cost to protect 1000 pages is nearly half that of the libmpk
implementation. Nearly twice as many threads are needed to be
synchronized in order to achieve the same latency as above.
Also in Figure 3, we see less than 2% increase to process
creation latency due to ppkey_setup().

VIII. CONCLUSION

It is demonstrated that existing attack mitigation techniques
such as Data Execution Prevention (DEP), Address Space
Layout Randomization (ASLR), and mprotect() are insufficient
for the needs of many applications. We have shown that
simple extensions to Intel Memory Protection Keys (MPK) can
provide per-process along with thread-local memory protection
at nearly the same efficiency as MPK. We can use per-
process memory protection keys to emulate the behavior of
mprotect() without incurring the overhead of kernel crossings,
TLB shootdowns, and numerous memory accesses. Process
creation latency overhead is less than 2% and synchronization
latency is reduced by 50%. A practical proof-of-concept is
lacking due to poor choice in selecting signal handlers in user-
mode to emulate ppkey updates. In the future, it is possible to
use a watchdog thread in the kernel to update PKRU register
on the user’s behalf.

ACKNOWLEDGMENT

The author would like to thank Sudarsun Kannan and
members of the Rutgers Systems Research Lab without which
this work would not have been possible.

REFERENCES

[1] T. Jaeger, R. Sailer and X. Zhang, ”Analyzing integrity protection in the
SELinux example policy,” SSYM’03 Proceedings of the 12th conference
on USENIX Security Symposium, 2003.

[2] J. Ahn, S. Jin and J. Huh, “Revisiting hardware-assisted page walks
for virtualized systems,” 2012 39th Annual International Symposium on
Computer Architecture (ISCA), 2012.

[3] Intel, "Intel® 64 and IA-32 Architectures Software Developer Manuals,”
11 November 2019. [Online]. Available: https://software.intel.com/en-
us/articles/intel-sdm.

[4] T. Newsham, “Exploiting Format String Vulnerabilities,” 2000.

[5] R. Roemer, E. Buchanan, H. Shacham and S. Savage, “Return-Oriented
Programming: Systems, Languages,,” ACM Transactions on Information
and System Security, 2012.

[6] D. Yoo, Y. Kim, T. Yoo and Y. Yeom, ”Analysis of the Random Number
Generator Using MD5 PRNG,” Advanced Science and Technology
Letters, 2017.

[71 J. Corbet, "Memory protection keys,” lwn.net, 2015. [Online]. Available:
https://lwn.net/Articles/643797/.

[8] S. Park, S. Lee, W. Xu, H. Moon and T. Kim, "libmpk: Software Ab-
straction for Intel Memory Protection Keys (Intel MPK),” Proceedings
of the 2019 USENIX Annual Technical Conference, 2019.

